The front of the O-21 has a typical

design evoked by having moved the

acoustic center inwards for correct

mistaken as a short horn arrange-

left indicates clearly that no horn

effect at all is there, no directional

ideal dispersion is measured

ment. The frequency diagram to the

radiation, to the contrary a wide and

phase array. The mouth very often is

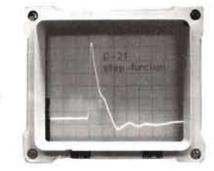
DINAUDIO®

TECHNOLOGY UNLIMITED

APPLICATIONS

dome tweeter for 3 way or super tweeter for 4- or 5-way constructions

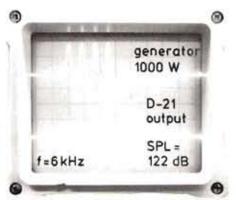
TOTAL ATTUTATION

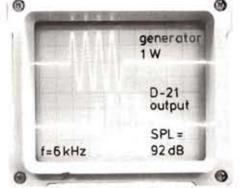

very low rise time high power handling rigid hexacoil technique liquid cooling of vc flexible wire connectors soft dome material no ringings aperiodic damped double chamber enclosure very flat impedance curve correct time aligned when used with other DYNAUDIO drivers

The moving system of this 5/6" (21 mm) soft dome tweeter is of extremely light weight. This together with the high flux density of the

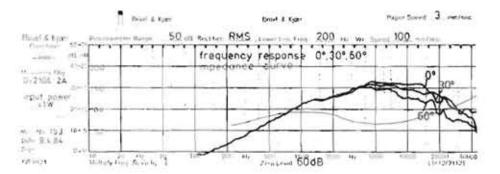
magnet system and the magnetic fluid result in an extremely low rise time and the response exceeds 35 kHz. The aperiodic damping and the high power handling give a natural and open sound with very good resolution. Transient peaks of more than 1000 watts are reproduced with full dynamic without compression. Ears used to normal speakers in the beginning will miss the usual ringings and overshoots. In 3-way system to be crossed at around 5000 Hz. As a super tweeter starting from 10 .. 15 kHz, 6 dB.

This STEPFUNCTION discloses clearly the quality standard of the unit. The slope drops without re-rising which stands for all frequencies. Very few speaker manufacturers are using this method of testing, perhaps because of the results?

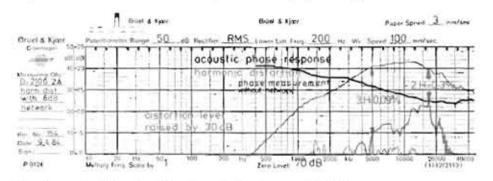


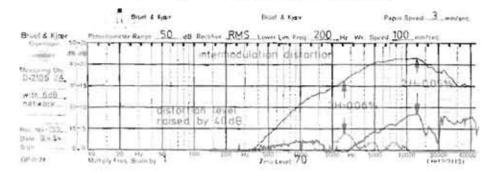

Tone bursts are the best way to obtain an accurate picture of overall acoustic performance. Regrettably they are mostly used only to test rise-time and ringing - which shows much more clearly with a step function test! With a tone burst, all the moving parts of a speaker can be loaded without burning the voice coil. With a given frequency the SPL should be 30 dB higher at 1000 Winput when compared with a 1 Winput, if the output is linear. This test shows the driver's ability to reproduce the transients without compression. The right picture shows that even a 1000 W input is not the limit: the dynamic response is absolutely linear. Data given in catalogues (and even test reports) normally are

calculated figures and not

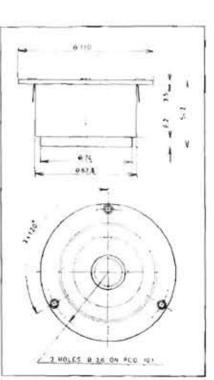

measured values.

This compression effect is either under-rated or ignored very often. That is why many speakers do not produce SPL's above 100 dB. in spite of higher theoretical specifications However this test exposes such anomalies between calculations and actual measurements.





The 30° and 60° curves indicate wide dispersion with correct phase. The impedance curve is flat because of aperiodic damping and magnaflex.



Low harmonic distortions. No phase shift to be noted, 6 dB filter used.

The intermodulation distortion diagram demonstrates; the D-21 converts the input signal into clean sound pressure

Compliance:						Overall dimensions: 0	110	10 x 55 mm		
suspension		Cms		<u>\$3</u>		Power handling				
acoustic		Cas		*>		*nominal DIN		60	0 W	
equivalent volume		Vas		**		*music DIN		120	0 W	
Cone					transient 10 m	5	100	o w		
eff. cone area		SD		4,9	cm ²	Q-factor				
moving mass		Mms		0.24	g	mechanical Oms		0.62	2	
lin.vol. displacement		Vd		3,4	cm ³	electrical Qes		1.21		
mech, resistance		Rms				total Qts		0 41		
lin, excursion	P.P	Xmax		0.7	mm	Resonance frequency free air: Is		130	0 Hz	
max excursion	P-P			2.0	mm	Sensitivity: 1 W / 1	m	92 dB		
Frequency response: 2000 / 35000 Hz					000 Hz	Voice coil.				
Harmonic distortion:			+,	0,3	%	drameter d		21	mm	
Intermodulation distortion:			53	0,06	96	length h		3.2	mm	
Magnetsystem:						layers n		2		
total gap flux				280	p Wb	inductance (1 kHz) Le		0.08	mH	
flux density				1.75	Tesla	nom, impedance Zvc		8	Ω	
gapenergy				125	mW's	min impedance Zmin	0	6,4	Ω	
force factor		BxL		4.01	Tm	DC resistance Re		5,3	Ω	
air gap volume Vo				0,11	0.11 cm ³ Data given are as after 30 hou		nois	20		
air gap height				2,5	mm	55.6 Given ere 65.8 (4) 35 (100) 3 (110)	*****	.9		
airgap width				0,65	mm					
Net weight:				0.65	kg					

All specifications subject to change without notice

Thiele/Small parameters are measured not statically but dynamically.